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Supplementary Material

A. Implementation Details
In this section, we provide details about the implementation
of our method. Specifically, we explain each component of
our method in detail, and provide training details about our
encoder network, motion generator, and mask predictor.

A.a. Detailed explanations of each component

Mask Prediction We first predict the mask using an en-
semble of 10 MLP classifiers [12], and refine it at inference
to further improve the quality. To accomplish this, we com-
pute contour areas in the mask using a contour detection
algorithm [5]. Next, each area is considered to be holes and
are removed if the ratio of its area with respect to the total
area is less than 3%. This process effectively removes the
noise from the predicted segmentation mask S as illustrated
in Fig 1 (c).

Multi-Scale Deep Feature Warping We warp multi-
scale features Di

t, each of which corresponds to a differ-
ent resolution. Given that the computed displacement fields
F0→t and FN→t are at a fixed resolution of 512×512, it
is necessary to resize them to match the dimensions of the
respective deep features. This resizing operation is carried
out using bilinear interpolation. Because the displacement
fields represent pixel-level shifts, the values must be ad-
justed relative to the size of the features they are applied
to. For instance, a 2-pixel shift at 256×256 resolution is
equivalent to a movement twice the size of a 2-pixel shift
at 512×512 resolution. To resolve this scaling discrepancy,
we multiply scaling factors Cu and Cv to the u and v com-
ponents of the displacement fields, respectively. The scaling
factors are defined as Cu = W

512 and Cv = H
512 , where W

and H represent the width and height of the deep feature
Di

t.

Cinemagraph Generation While the multi-scale fea-
tures warped with modified joint splatting cover most of the
pixels, there can be some pixels with missing values. We
apply a median filter to Di

t to fill these small regions. Our
final composited features Di

t with missing values filled can
be expressed as follows:

Di
t(x

′) = (1−H)⊙Di
t(x

′) +H ⊙Median(Di
t(x

′)), (1)

where H is a binary hole mask. The mask has a value of 1
for missing pixels and 0 for filled pixels. Median represents
a median filter with a kernel of size 7×7. Large holes with
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Figure 1. Mask prediction results. (a) Given an input image,
(b) a mask is predicted by the mask predictor and (c) further re-
fined by hole filling.

more than 3% of the total area sometimes occur, and in this
case a simple image inpainting method [7] is applied to Di

t.

A.b. Training

Encoder Network To encode an input image into both
latent codes and the deep features of StyleGAN, we train
an encoder network using the architectures proposed in Yao
et al. [10]. Images from the LHQ [4] dataset, 84,466 for
training and 5,534 for validation, were used to train this en-
coder network. We trained the network for 12 epochs using
the following loss function:

Lenc = L2 + λlpipsLlpips + λregLreg, (2)

where L2, Llpips, and Lreg are the reconstruction loss, per-
ceptual loss, and feature regularization loss, respectively.
λlpips and λreg are the weights for each loss term. We set
λlpips = 0.2 and λreg = 0.01. We used the ADAM [3] opti-
mizer with an initial learning rate of 10−4, which resulted in
a computation time of about 19 hours on an NVIDIA RTX
A5000 GPU with a batch size of 1.

Motion Generator We trained an image-to-image trans-
lation network [8] as our motion generator. The motion
generator was trained for 35 epochs, using the default pa-
rameters of Holynski et al. [2]. For sky motion, a set of
1,060 image-motion pairs from 430 unique videos of Sky
Time-Lapse [9] were used for training. For fluid motion, a
set of 4,895 image-motion pairs from 979 unique videos of
the Eulerian [2] dataset are used. We resized all videos to
a size of 512×512. To generate ground-truth motion fields,
we use a pre-trained optical flow estimator [6]. The estima-
tor calculates the average optical flow between consecutive
frames within a 2-second window. The motion generator
was trained with the ADAM [3] optimizer with an initial
learning rate of 2 × 10−4, which resulted in a computation
time of about 6 hours on an NVIDIA GeForce RTX 3090
GPU with a batch size of 2.



Table 1. Human perceptual study results for assessing the occur-
rence of tearing artifacts. The best scores are bolded.

Method Tearing Artifacts ↓
Ours - w/o DFW 4.37 ± 0.83

Ours - Full 1.97 ± 0.99

Mask Predictor We trained a MLP classifier as our mask
predictor using the architectures proposed in Zhang et al.
[12]. An ensemble of 10 MLP classifiers was trained us-
ing 32 input features paired with human-annotated segmen-
tation masks. To construct the input feature D∗, we first
project the annotated images into both D10 and w+. We
then feed D10 and w+ to a pre-trained StyleGAN to ex-
tract the deep features Di where i ∈ {10, 11, ..., 18}. These
deep features are all resized to 512×512 and concatenated
in the channel dimension. The constructed input feature
is D∗ ∈ R512×512×1472. We trained each classifier for 3
epochs with the ADAM [3] optimizer with an initial learn-
ing rate of 10−3. Training all 10 MLP classifiers required
about 15 hours of computation time on an NVIDIA Tesla
V100 GPU with a batch size of 2.

B. Effectiveness of Deep Feature Warping
When warping is performed in image space, tearing artifacts
are likely to occur for large pixel flows. To evaluate the
effectiveness of our method for removing the tearing arti-
facts, in addition to qualitative and quantitative evaluations,
we conducted a human perceptual study. The user study
involved 19 participants who were presented with cinema-
graph results and asked to score the occurrence of tearing
artifacts. The ratings were made on a 1-to-5 scale, with
”strongly disagree” being 1 and ”strongly agree” being 5.
The scores reported in Table 1 reveal that the application of
DFW indeed removes the tearing artifacts, proving its ef-
fectiveness.

C. Selection of Deep Feature Index
Our method utilizes the deep features of a pre-trained Style-
GAN for both the GAN inversion and cinemagraph gen-
eration process. Various deep features Di where i ∈
[1, 2, ..., 18] can be obtained from StyleGAN, thus we con-
ducted a series of experiments to determine the proper index
for our task.

C.a. Reconstruction and Warping Index

For each GAN inversion and DFW, a different feature in-
dex i can be used. Thus we explored various combinations
of feature indices to assess which one led to the best per-
ceptual quality. For GAN inversion, we employed feature
indices i ∈ [5, 6, ..., 13], while for DFW, we utilized fea-
ture indices j ∈ [i, i + 1, ..., 16]. To assess the percep-
tual quality of the generated cinemagraphs, we measured
LPIPS [11] between the generated frame În and the corre-

Table 2. Quantitative evaluation of perceptual quality according to
reconstruction and warping indices. The best scores are bolded.
aaaaaaaaaaa

Warp Index

Recon Index

5 6 7 8 9 10 11 12 13

5 .01335 - - - - - - - -
6 .01327 .01324 - - - - - - -
7 .02033 .02388 .01284 - - - - - -
8 .02042 .02388 .01279 .01265 - - - - -
9 .01882 .02199 .02105 .02475 .01258 - - - -
10 .01877 .02199 .02107 .02478 .01251 .01246 - - -
11 .02049 .02418 .02363 .02761 .02612 .02717 .01240 - -
12 .02054 .02420 .02362 .02761 .02608 .02729 .01238 .01224 -
13 .02098 .02324 .02319 .02609 .02535 .02869 .02083 .02759 .01248
14 .02094 .02323 .02319 .02603 .02535 .02676 .02075 .02759 .01235
15 .02277 .02432 .02429 .02708 .02729 .02859 .02348 .02835 .02533
16 .02322 .02460 .02453 .02731 .02736 .02861 .02360 .02840 .02530

Perceptual QualityStylization
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Figure 2. Trade-off between perceptual quality and stylization ac-
cording to feature index i.

sponding ground truth frame In using 224 test videos from
the Sky Time-Lapse dataset [9]. Table 2 reveals the quan-
titative evaluation results on perceptual quality. The results
show that the perceptual quality tends to improve as higher
feature indices are employed for reconstruction. The high-
est perceptual quality is achieved when the latest feature in-
dex j ∈ [6, 8, ..., 16] within the same StyleGAN block as
the reconstruction index i is used for warping. Specifically,
pairs (i, j) such as (5, 6), (6, 6), (7, 8), (8, 8), ..., (15, 16),
and (16, 16) produce the highest perceptual quality for each
reconstruction index i.

C.b. Perceptual Quality and Stylization Ability

We searched for the sweet spot in a trade-off between per-
ceptual quality and stylization ability. We used 224 test
videos from the Sky Time-Lapse dataset [9], utilizing the
feature index pairs (i, j) with the highest perceptual quality
described in Sec. C.a. To assess perceptual quality, we com-
puted LPIPS between the generated frame În and its cor-
responding ground-truth frame In. To evaluate stylization
ability, we computed RMSE between the Gram matrix [1]
extracted from the target style image G(w+

t ) and the gener-
ated frame Gwarp(D

10, w+
s , F0→t, FN→t). Target style la-

tent w+
t was obtained from 16 color images from the RYB

color model. We optimized w+
t while fixing StyleGAN, us-

ing the ADAM [3] optimizer with an initial learning rate of
0.1. Figure 2 shows the trade-off between perceptual qual-
ity and stylization ability: when we increase feature index i,
the generated cinemagraphs exhibit higher perceptual qual-
ity but demonstrate less stylization ability. We selected fea-
ture index i = 10 considering this trade-off.
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